La importancia de fijarse dónde pisamos

Juan Corral Aguirre*

Aunque esto parezca una perogrullada, en lo que sigue veremos cuán trascendente puede resultar observar cuidadosamente dónde se pondrá el pie, esto como una invitación a la reflexión que surge al estar —literalmente— en un río de mariposas, en una visita reciente a la Reserva Especial de la Biodiversa de la Mariposa Monarca en Michoacán. Lo que sirve, de paso, como un pretexto para invitar al público en general a tener mucha mayor consideración con la vida que nos rodea, y no esperar todo acerca de su descubrimiento, por ejemplo, en misiones extraterrestres.

Sirva de preámbulo lo siguiente. Hay sitios en la Tierra donde las temperaturas en invierno son bajísimas y pueden alcanzar incluso 30 grados Celsius bajo cero o más. Y aun así, los organismos sobreviven: ¿cómo le hacen? Hablando de insectos, una respuesta está en la llamada diapausa, que es un estado de reposo en el que las actividades fisiológicas se reducen mucho. Otra es que en la “sangre” de los insectos, llamada hemolinfa, reside una enzima —proteína— que les permite superar los días aciagos en que la temperatura es tan baja que el agua de su cuerpo se congelaría, y, como sabemos, al suceder esto se forman cristales de hielo que fácilmente pueden perforar la delicada membrana de la célula (un ejemplo en las plantas es la “helada negra”).

A este proceso que permite a la hemolinfa descender su temperatura de congelación se le llama históresis térmica. Los fluidos corporales se “superenfrián” sin llegar a cristalizarse, o lo hacen lentamente. La citada proteína ha sido aislada de una amplia gama de organismos tales como peces de aguas frías, insectos, plantas y bacterias. Se cree que actúan uniéndose a la superficie de los cristales de hielo e impidiendo su crecimiento.

Investigadores canadienses de la Queen University, han descubierto que las proteínas tienen una estructura molecular diferente, pero la misma función. Los usos prácticos de tales sustancias podrían variar desde la preservación de alimentos congelados hasta la del plasma sanguíneo. Dado que actúa como enzima, una pequeña cantidad puede ser efectiva para producir un efecto importante, lo cual, sin duda, agradecen los organismos que la portan en sus sistemas de fluidos corporales.

Un ejemplo claro lo tenemos en la reserva de la mariposa monarca; encontramos en los inicios de febrero cientos de cuerpos caídos en el camino hacia el sitio donde se concentran decenas de millones de las volátiles exploradoras, y es terrible ver cómo los estudiantes (ya no digamos el turista común), de todos los grados que por ahí pasan, aplastan sin consideración alguna las mariposas sin siquiera fijarse que muchas de ellas no están muertas, sino que están en diapausa, y dadas las bajas temperaturas presentadas en los sitios de hibernación, es muy probable que la proteína anticongelante les permita sobrevivir en ese estado hasta que las temperaturas cálidas de la primavera lleguen y les permita reproducirse y regresar al norte.

Entonces, ¿es acaso una ironía del desarrollo que las mariposas posean un sistema de protección invertido tan avanzado, para venir a morir bajo nuestra suela? ¿No el desarrollo sustentable, tan manido, debería estar centrado en la búsqueda de la armonía entre los “componentes del ecosistema” y no sólo en el punto de vista “antropico”? Fíjémonos dónde pisamos. Y no sólo quiero decir literalmente.

* Laboratorio de Ecología. Facultad de Biología de la Universidad Veracruzana.